Filtersafe provides high performing BWMS filters for ConocoPhillips Fleet

Filtersafe multifilter installed on Polar fleet

Learn why ConocoPhillips chose the De Nora BALPURE® BWMS with Filtersafe filters for their entire Polar Vessel fleet.

ConocoPhillips, Alaska’s largest crude oil producer and the largest owner of exploration leases, operates a series of vessels traveling between Alaska and San Francisco. This west coast route has particularly challenging conditions due to widely ranging water quality, including high sediment waters in San Francisco Bay.

ConocoPhillips Polar route with Filtersafe filtersConocoPhillips recognized the need for high-performing ballast water management system (BWMS) filters to ensure regulatory compliance and operational efficiency. In 2015, the company invested in independent testing to assess and choose the right BWMS filter for the fleet’s operational route.

It was through this testing that they came to the conclusion to install the De Nora BALPURE® BWMS with Filtersafe filters across the fleet.

The BallastSafe BS300-T filter . The filter is designed to perform under high sediment loads in poor water quality areas and has a flow rate of 750 m3/hr. Due to the enormous size of the ships in the fleet, it was decided that in addition to 2 BallastSafe BS300-T filters, that 2 additional BallastSafe BS1204H filters should be added when the BWMS is installed in each ship.

 

Filtersafe solution

Most filters build a “cake” i.e. an uncleanable part of the filter created over time as a result of a decrease in water pressure in the filter system. For the filter to return to optimum performance levels, the filter must be manually cleaned. In contrast to most filters, Filtersafe’s solutions are the only technology available to the global shipping industry today which is self-restoring.

This means the filters have no uncleanable areas and are able to remove even the toughest build-up, with the filter returning to its original clean state after every heavy use in less than three minutes. For example, in the Shanghai Test our filter fully recovered from an unimaginable TSS load of 2,450 ppm in 182 seconds. 

Filtersafe has an exclusive, upgradeable cleaning mechanism that can be modified even after installation to improve cleaning efficiency. This means the filter can be configured according to the vessel’s trading waters and then changed as those trade routes are altered over the life of the ship. This is significant as it removes the limitations that ballast water management systems (BWMS) have traditionally placed on ships, allowing vessels to move between low and high sediment routes, such as the tankers navigating around high sediment areas of San Francisco, without being prohibited by filter performance.

 

Results

The filter operated under various conditions for several months, monitoring and recording hundreds of hours of valuable operation data. The results of the tests demonstrated flow rates varying between 400-750 m3/hr. These rates were recorded during testing and varied according to inlet pressure levels and sediment loads, which reached as high as 400 Nephelometric Turbidity Units (NTU) (TSS 350- 400mg/L). The filter performed very well during high sediment loads, especially at known turbid locations such as the Shell Terminal in San Francisco Bay and the ports of Anacortes and Valerio in Washington, recovering quickly from the high dirt load conditions. In addition, the filter operated without the need for manual cleaning throughout the duration of the test.

Following the successful installation and the test results on board the pilot Polar vessel transporting fuels regularly between Alaska and other major energy producing ports along the North American West Coast, ConocoPhillips decided to install Filtersafe filters on the entire Polar fleet.

Following the initial test, all five crude oil tankers in the Polar fleet will feature filtersafe filters as an integral part of their BWMS, with 2 ships already past installation and commissioning and the rest with planned installation datesin 2022: Polar Endeavour, Polar Enterprise, Polar Resolution, Polar Adventure and Polar Discovery, as outlined above. Each vessel was assessed according to its ballasting needs to ensure the right filters and flow rates were chosen. Filtersafe also worked with a leading class society, the American Bureau of Shipping (ABS), to complete a successful remote pressure test survey to certify the filters ahead of installation to ensure the highest standards for ConocoPhillips.

To read more about the installation, please download the case study here:

What the Shanghai Test Results Tell Ship Owners About a Ballast Water Filter

Shanghai River with Muddy Water

Savvy ship operators know that the right filter is key to not only complying with IMO and USCG regulations but also to ensure that their ship can sail and ballast anywhere, in addition to costing or saving a ship money by how long it takes to filter and fill a ship’s ballast water tanks.

Shipowners and operators regularly ask Mr. Louis Peperzak (Technical Manager Ballast Water Services at Control Union) and his colleagues: “How am I supposed to trust that a ballast water filter will work in severe circumstances?” they continue: “since IMO regulations account for 50 mg/L of TSS but in Shanghai Harbor, TSS concentrations can reach up to 1,000 mg/L?”

They turned to Control Union specifically as they are a highly respected 3rd party certifier of various maritime QA/QC evaluations, including for ballast water management systems. The Control Union as a whole is a collection of international companies that offer certification in various industries, including marine and ballast water.

What is the ‘Shanghai Test’?

This is how Control Union came to create their ‘Shanghai Filter Test’, which seeks to mimic the muddy, turbid waters of the popular Shanghai Port. If a ballast filter could manage to filter the 1,000 TSS mg/L of suspended solids that can be found in the waters of Shanghai without clogging, then they could be confidant that their ship can sail to and ballast in any port without fear that the filter would clog from water with high total suspended solids (TSS).

The test puts water with mud the similar consistency and particle size distribution as the mud found in the Port of Shanghai through the filter at increasing amounts until the filter has less than 5% outflow and effectively clogs. Since the Port of Shanghai can have a maximum TSS of 1,000 mg/L that is the benchmark Control Union has set for whether a filter passes the test or not. If a filter can work at 1,000 mg/L without clogging, it is considered to have passed the test.

A clogged ballast water filter is an expensive and time-consuming problem for shipowners. A clogged filter means:

  1. The ballasting process must stop while the filter is cleaned, halting loading or unloading of cargo from a ship;
  2. Seafarers must invest manpower and spend time cleaning the filter instead of attending to their other important, onboard duties;
  3. More time spent in port, having to pay port fees, and time lost on the delivery route.

If a shipowner can know that a ballast water filter comes tested & certified by Control Union as having passed the test and not clogging at 1,000 mg/L of TSS, they can have more confidence in their entire BWMS. This means a certified ballast filter is also of interest to BWMS manufacturers and naval architects who help ship operators pick and install their BWMS.

Filtersafe’s Shanghai Test Results

Filtersafe sent 5 configurations of its ballast water filter to the Control Union location in the Netherlands for the test (a combination of 25 micron and 40 micron screens paired with standard, turbo and superturbo automatic self-cleaning options in a BS101 filter body).

Filtersafe is proud to announce that not only did all 5 of the configurations pass the 1,000 mg/L challenge, all filters were challenged with increasingly turbid water, up to 2,450 mg/L, and none of them clogged.

We invite you to take a look at the results yourself. You can download the Shanghai Test Report to receive an explanation in detail of how the test was conducted and the results of each of the 5 tests.

Please fill out the form below to immediately download your copy of Filtersafe’s Shanghai Test Report.

316L vs. 904L Stainless Steel: What’s the Difference?

PMI gun testing 904L steel

The global maritime industry has been shifting towards greater environmental protection efforts in recent decades. The International Maritime Organization’s Marine Environment Protection Committee (IMO MEPC) works to address issues that affect and threaten our oceans, including air and water pollution, disaster preparedness, and ship recycling.

However, this organization also studies an environmental issue hardly known to the public: ballast water management.

Ballast water tanks keep a ship balanced as she transports cargo, but it must be fully filtered and treated before being released at her port of call. The IMO guidelines require that ships only discharge ballast water, that is:

  • < 10 viable organisms/m3 that are ≥ to 50 micrometers in minimum dimension
  • < 10 viable organisms between 10 micrometers and 50 micrometers in minimum dimension per ml
  • < 1 colony-forming unit (CFU) per 100 milliliters of Toxicogenic Vibrio Cholerae
  • < 250 CFU per 100 ml of Escherichia coli
  • < 100 CFU per 100 ml of Intestinal Enterococci
Organism SizeSize UnitNumber of OrganismsStatusAmountAmount UnitType
Over 50μm10viable organisms1m3Any
10 to 50μm10viable organisms1mLAny
--1Colony-forming units100mLToxicogenic Vibrio Cholerae
--250Colony-forming units100mLEscherichia coli
--100Colony-forming units100mLIntestinal Enterococci

These guidelines have solidified the importance of ballast water management systems (BWMS), making them a vital part of every ship. It is also more important than ever to maintain (and in some cases, upgrade) these systems – mainly because, as Filtersafe Head of Marine Mark Riggio recently said, “[the] global maritime industry [is] shifting its focus to operational compliance.”

The Best Alloy for Ballast Water Management Systems

Seawater filtration systems have a unique challenge to overcome. They must effectively filter debris and microorganisms while also withstanding the high chloride levels in the water, which constantly threaten to corrode the filter and its filtration screen. To achieve this goal, manufacturers often design BWMS with a filter that has a filtration screen made from a durable stainless steel alloy.

For many years, the industry-standard alloy of choice for filter screens has been 316L stainless steel. But due to the rising need for operational compliance, some of its shortcomings in seawater environments are coming to light. This has led some manufacturers to opt for the higher-grade 904L stainless steel when producing filtrations screens for seawater applications. Both these alloys can be applied in seawater filtration, but what are the differences between these two types of steel? And ultimately, as many shipowners are left to wonder, which is the right alloy for their BWMS, and their bottom line?

What is 316L Steel?

316L stainless steel is an austenitic alloy commonly known as “marine grade stainless steel” because it can be used for nearly 90% of marine applications – including filtration. In addition to metals like iron and nickel, 316L contains 16-18% chromium and 2-3% of molybdenum. These elements are important because they increase the alloy’s corrosion resistance; the chromium interacts with oxygen in the seawater to create a protective layer of chromium oxide, and molybdenum improves the metal’s ability to resist pitting corrosion. Additionally, 316L has lower levels of carbon (hence the “L” in its name), which gives it greater protection against corrosion.

What is 904L steel?

While 316L has long been the primary alloy ballast water filtration manufacturers use for their filter screens, it is not the only alloy available on the market. In fact, Filtersafe has been examining the value of 316L for many years now. As global leaders in the seawater filtration industry, our engineers sought to improve filtration standards by improving our materials. Our studies concluded that 316L stainless steel was not durable enough to meet our requirements – and so we opted instead to manufacture filter screens from 904L stainless steel In fact, Filtersafe – the global leader in seawater filtration – has been examining the value of 316L for many years now.

Like 316L, 904L stainless steel is a low-carbon austenitic stainless steel. However, its chemical composition includes greater numbers of chromium (19-23%) and molybdenum (4-5%), which gives the alloy greater corrosion resistance than 316L. Some people are familiar with 904L stainless steel as a metal commonly used to produce Rolex watches, which speaks to its high quality and durability. However, the same benefits that make it a must-use for Rolex also make it hugely beneficial for seawater applications.

316L vs. 904L: Durability

Seawater is highly unpredictable. It can have dramatic variances in temperature, chloride level, and the presence of microorganisms or debris. Therefore, a BWMS filter must be durable enough to withstand these changes.

Both 316L and 904L stainless steel contain chromium, which reacts with oxygen in the air to form a thin, protective layer of chromium oxide on the surface of the alloy. However, it is important to note that 904L contains more chromium than 316L. This means it is likely to provide greater protection over a longer period of time.

types of corrosion that afflict stainless steel in seawater applications

904L vs. 316L: Corrosion Resistance

Perhaps the most important feature of any alloy used in marine applications is its ability to handle constant exposure to corrosive substances. Seawater filters are prone to several different types of corrosion attacks, including from chloride, microbiologically induced corrosion, and crevice corrosion. The filter is particularly susceptible to these three corrosion types during the 1-3 week period between ballasting, when the filter is immersed in stagnant water, which can allow the development of a biofilm inside the filter and on the screen, and lead to corrosion. Therefore, a ship owner needs a filter with as much corrosion resistance as possible.

Shipowners and manufacturers can measure corrosion resistance by looking at an alloy’s PREN value. This formula looks at the amount of chromium (Cr), molybdenum (Mo), and nitrogen (N) in an alloy to determine just how well it will hold up against corrosion. In this case, 904L stainless steel is the clear victor over 316L; with an average PREN value of 36.7, it is much stronger than 316L (which only has a PREN of 26.1). Therefore, 904L is more likely to withstand the corrosive power of seawater.

904 vs. 316: Steel Hardness

To further understand the differences between 904L and 316L stainless steel, we must examine the hardness of both metals. The best way to do this is to look at the Rockwell Scale, which measures the indentation hardness of a material. Metals that score highly on the Rockwell scale are harder, which implies that they will be strong and withstand any bumps or bruises.

Both 904L and 316L stainless steel have a Rockwell hardness value below 95, which is typical for most stainless steel. This means that they will be able to withstand most forces, which is important for BWMS. However, it is far more important that seawater filter screens withstand the internal dangers like chloride and other corrosion attacks. 904L offers greater protection overall, which sets it above 316L.

904 vs. 316: Cost

904L stainless steel and 316L stainless steel are both readily available for purchase. Many industries and companies use 904L stainless steel, and the alloy has some brand recognition as it is famously used by watch manufacturers like Rolex and OMEGA. 316L stainless steel is commonly used for exhaust manifolds, heat exchangers, jet engine parts, and much more. As a result, BWMS manufacturers can introduce either alloy into their supply chains without suffering a delay in supply or a product bottleneck.

But which alloys offer the most “bang for your buck”?

If you look solely at the numbers, 316L may seem like the more attractive choice. Because of its widespread use across so many industries, this metal is both easy to purchase and available for a lower price. 904L tends to cost about 1.3 times more than 316L, which can make some manufacturers balk at the idea of producing all their filter screens from this material.

However, it is important to remember that filter screens made from 904L stainless steel will last longer and require fewer repairs than filters made from less durable materials. The enhanced corrosion resistance capabilities of 904L stainless steel make it less likely to wear down and break from corrosion, and therefore it will require fewer repairs over its lifespan. This is ideal for shipowners who do not want to incur additional costs to keep their ship in compliance with industry environmental and operating standards.

What is the Difference Between 316 and 904L Stainless Steel?

When ship owners are deciding between filters for their BWMS, they must consider a variety of factors before making their choice: cost, availability, value, etc. On the surface, the differences between 316L and 904L stainless steel may seem negligible, but in actuality, they have huge impacts on the long-term value of the filter.

To the Filtersafe team, the choice is clear: 904L stainless steel is the best choice for BWMS filters. 904L stainless steel offers greater durability, which makes it more effective and less costly over time (despite a higher initial cost). This alloy will help boost standards across the seawater filtration industry – and, in turn, improve environmental factors in oceans across the globe.

To learn more, download our white paper on Overcoming Corrosion of Stainless Steel in Seawater Applications for more extensive research on the common alloys used in seawater.

10 Most Invasive Marine Species

Ships worldwide transport over 10 billion tonnes of ballast water every year and by doing so inadvertently bring small plants and animals from one port to another, when they load and unload the water. Running the risk of ecological disaster via invasive species.

This is is why the International Maritime Organization decided vessels need to install ballast water management systems – to clean and treat the water before it is loaded into the ballast tanks. This way when the ship reaches its next port and needs to dump the water in its ballast tanks overboard, it won’t introduce any invasive species into a new ecosystem.

The following infographic shows the top ten invasive marine species that were transported by international shipping and the impacts they had.

Filtersafe is proud to be a leader in the movement to end the spread of invasive species and to protect our marine resources.

top 10 most invasive marine species
Click on the Top 10 Most Invasive Marine Species image to see in high quality.

Filtersafe’s Smartweave Screen: Water Filtration at a Whole New Level

filtersafe default image with logo

Most eCommerce clicks not only put new clothes or appliances in your virtual shopping cart, they also are putting your packages on cargo ships for delivery. The continued dependence on online shopping has meant more work for  international shipping vessels, which are constantly moving from one corner of the globe to another – and they’re discharging ballast water in every port they visit.

This can be dangerous for our oceans, as zooplankton, phytoplankton, and other microorganisms that hitch a ride in ballast tanks can damage the native ecosystems if they are deposited into a new body of water. Therefore, it is essential that ships filter their ballast water before releasing it back into the sea.

As a company founded by engineers, Filtersafe has been dedicated to finding innovative solutions to filtering sea water. The current seawater screens often suffer two main problems: blockage, which can result in pressure depressions and a decreased flow rate, and an inability to filter out smaller microorganisms.

To address these issues, the Filtersafe engineers created the Smartweave screen. This unique technology is a weave-wire screen specifically designed to tackle the challenge of seawater filtration. By using a combination of weave wire filtration screens, protective screens, and a reinforcement layer — as well as the automated cleaning power of our Everclear system — this innovative, highly effective screen filters out sediment and microorganisms, protecting native marine life in every port. Its combined efficacy and durability make the Smartweave screen a filtering element ships can rely on for years.

 

How It’s Made

Filtersafe understands the unique challenges facing ballast water filtration (one of the most challenging seawater applications). Seawater contains microscopic particles that can cause harm when transferred to other ecosystems and encourage the creation of corrosion within the ships’ interior. Filtering out elements this small requires a complex and multi-layered system, so the Smartweave designers created exactly that.

The Smartweave screen is made up of three stainless steel weave-wire screens and a fourth reinforcement layer to enhance the screen’s integrity. This includes one filtration control layer, two protective layers on either side, and one reinforcement layer. We then take this combination of screens and sinter them together, creating one mega-screen that is durable enough to filter without additional support.

These screens are available in a variety of sizes, from 500 microns down to 10. This allows ship owners to choose a Smartweave screen that best suits their vessels’ unique needs. The Smartweave seawater screen is also made from 904L stainless steel: an stainless steel that offers high corrosion resistance, higher quality, and a longer-lasting screen than the standard 316L stainless steel and other options in the market today.

The innovation and careful design work behind Smartweave have made it one of the top weave-wire screens for seawater filtration today. This screen offers enhanced strength and top performance, so shippers can trust that their ballast water is safe to discharge and is compliant with the IMO G8 requirements.

 

How Does It Work?

All the innovation in the world doesn’t matter if a product doesn’t work. The engineers at Filtersafe know how important seawater filtration is, and so they’ve spent years testing and perfecting the Smartweave screen. As a result, Smartweave is one of the most effective filtration systems available today, keeping zooplankton, phytoplankton, and sediment out of ballast water across the world.

The term “zooplankton” refers to small microorganism and the immature stages of larger species. It is vital to filter these from ballast water, as they can be detrimental to the native ecosystem at a port of call. According to tests from Filtersafe and other research groups, the Smartweave screen removes 99.95% of zooplankton from ballast water – more than any other filter available today.

Shippers also need to filter phytoplankton from their ballast water before releasing it into the sea. Phytoplankton, or microscopic marine algae, are an important food source in the ocean’s ecosystems – but only if they’re in the right location. While phytoplankton can be very small (as small as 10 microns), Smartweave is an effective filter for them, too. that the Smartweave screen removes 100% of phytoplankton larger than the micron of your selected screen.

Finally, a filter must be able remove sediment and other suspended solids from any ballast water. Once again, Smartweave delivers here:  A series of tests we conducted on our filter show that even in extreme conditions when the TSS levels reached 2500 ppm, we were able to decrease the decrease suspended solids from 2500 ppm to 100 ppm – a removal rate of 98%.

 

Constantly Improving

Today, Filtersafe treats 25% of the world’s ballast water – and all because of unique, innovative, and effective products like the Smartweave screen. For some teams, the Smartweave screen’s impressive filtration rates would be enough to call the filter a success. But Filtersafe is dedicated to making the ballast water filter even better.

The team is constantly innovating and perfecting our ballast water treatment systems. We’ve outfitted our Smartweave screens with our Everclear cleaning sequence, which automatically returns your filter to its original operating parameters. This ensures peak performance and an optimum flow rate – and provides the user with peace of mind.

Each Smartweave screen is used in conjunction with Filtersafe’s patented nozzles – the Nozzlex system. This uses suction technology to clean the screen thoroughly and completely with each use(without damaging it). These features help maintain the Smartweave’s exceptional performance, so captains can focus on their cargo and getting to their next location and not just about meeting USCG or IMO water treatment standards.

*Efficacy is dependent on the size and distribution of the TSS.

Sizing Up BWTS Filter Options To Reduce Operational Compliance Risk

filtersafe default image with logo

In a recent panel discussion for Riviera’s Ballast Water Webinar Week, Dr. Guillaume Drillet, Regional Manager at SGS, shared his views on the main reason for ballast water treatment system (BWTS) failures during compliance testing. Speaking on the webinar titled “BWMS commissioning testing: making it work in practice”, he said that organisms over 50 microns in size are responsible for clogging BWTS, subsequently leading to test failure.

His comments underline the critical importance of BWTS filters – the component responsible for preventing organisms from entering the tanks. Without a strong and robust filter, the effectiveness of the entire BWTS could be compromised, leaving manufacturers open to criticism from ship owners and operators, who must repeat unsatisfactory tests at a later date.

 

Compliance challenges

Selecting the right filter brings significant rewards to the shipping industry, from driving compliance, to preserving marine biodiversity and increasing operational efficiency.

Each BWTS and vessel is unique and faces its own set of challenges and specific stresses. These are impacted by the BWTS used and the conditions it must operate in. For example, there are challenging testing conditions in shipyards with poor water quality, shallow harbors with a high silt load, and difficult initial loading conditions. If a filter is unable to withstand these conditions and clogs, water flow through the BWTS will be limited or even prohibited.

 

Regulation requirements

Under IMO G8 requirements, filters must prove their ability to perform effectively in water with total suspended solids (TSS) up to 50 mg/liter. However, the threshold to pass this test is not reflective of water quality standards in some key maritime locations. For example, TSS in the Ports of Shanghai and Hamburg are twenty times higher than IMO G8 requirements for BWTS type-approval testing. This means high-quality filters that exceed IMO performance standards are critical.

Fortunately, filter performance in more challenging marine environments can be tested through the Control Union Shanghai filter test (Procedure CUW-HBR-P-2), which uses proxy mud up to and beyond 1,000 mg/L to test filter performance.


Size is part of the solution

In order to prevent organisms over a certain size from impacting BWTS and compliance testing, filters need to be engineered with a design that has effective mesh sizes.

Filtersafe use mesh sizes from 10 microns upwards, at flow rates from 50-5000m³/hr in a single unit. Using these fine mesh sizes ensures the system prevents organisms from entering or impacting the system by settling into the ballast tanks or clogging the system.

A filter capable of withstanding the highest TSS conditions found in the world’s oceans will provide confidence to shipowners that the BWTS will pass compliance tests in any port around the world. In its Shanghai Test, which simulates an excessively high particle load, Filtersafe filters did not clog, even when the test reached 2,500 TSS.

With compliance testing coming ever more to the fore, BWTS manufacturers, shipowners, and operators need to be confident that systems are capable of performing effectively throughout the lifecycle of the vessel across all marine environments, including areas where water quality challenges are acute. It is important to remember – mesh size matters.

Filtersafe’s NozzleX: An Innovation that will Save Your Filter Screen

Filtersafe's nozzleX, the only nozzle your filter will ever need

At Filtersafe, we understand that water filtration is essential to helping many industries run smoothly. However, we also understand that today’s filtration technologies can always be improved — which is why we strive to be a leader in the world of water filtration. Our engineers have decades of experience in the industry, and they’re dedicated to creating the top technologies for automatic filtration.

nozzlex nozzle head in filter

One such technology is the NozzleX suction scanner – an innovative tool that enables the cleaning of organic and inorganic material from your filter’s screen, without wearing down the nozzle or wearing out the screen. With a typical automatic screen filter, the nozzles sit on a bar called a raiser. The raiser moves the nozzle heads back and forth along the length of the screen, while also rotating the nozzles in a corkscrew motion. The nozzles scan the surface, and by using negative pressure, dislodge debris one square inch at a time. While this does help the screen filter water effectively in the short term, the force from the nozzle can damage the screen and shorten its lifespan.

NozzleX, by contrast, uses low head pressure (as low as 23psi) to clear off all the buildup on the screen without damaging it. First, the raisers move the nozzles in such a way that 100% of the screen is scanned and cleaned. Next, in contrast to other filters, NozzleX nozzles safely come into contact with the screen, utilizing gentle pressure to pull materials off of the screen without impacting the screen’s integrity. This results in improved performance and a longer lifespan for your ballast water filter or other filtration technologies.

 

Why It’s Important

The importance of a properly functioning nozzle is simple – a water filtration system only works when it’s clean. Whether you are filtering ballast water before filling your tanks, protecting your oil and gas exploration equipment safe from organic oceanic materials, or prefiltering water for desalination, each filtration system should have the same thing in common  a reliable nozzle to clean your screen.

 

How it Works

The NozzleX uses passive suction to remove organic matter like debris and sediment from the filter screen. Through an innovative combination of consistent force and passive pressure, whereby the nozzle both actively removes material from the filter while allowing the naturally occurring changes in pressure to carry it away, this nozzle makes cleaning your filtration system an easy and automatic process.

This patented system moves around the filter screen automatically, using as little as 1/32nd the force of typical cleaning nozzles to offer a thorough cleaning with minimal wear. Then, the nozzle disposes of reject water through the system’s flushing chamber, guaranteeing that buildup won’t remain on your screen.

NozzleX is part of Filtersafe’s Everclear cleaning system, which includes the Smartweave screen filter. Working together, these two technologies provide exceptional filtration power while minimizing space. This ensures that operators can use their filtration system as long as possible.

A Closer Look At Other Nozzles

NozzleX vs Dynamic Spring-Loaded NozzlesFiltersafe nozzle nozzlex force chart

While Filtersafe relies on its patented proximity nozzle to consistently clean the screen at any pressure, dynamic spring-loaded nozzles use brute force to ensure their nozzles clean sufficiently at low operating pressure. More force means that both the nozzle and screen wear out faster, in fact, some dynamic spring-loaded nozzles need to be replaced every few weeks!

Floating & Brush-Loaded Nozzles vs Patented Proximity Nozzle

Some nozzles ‘float’ along the screen, never coming into contact with the screen. This reduces nozzle wear but decreases cleaning efficiency and in fact allows dirty backflow to slip out of the nozzle back into the filter’s interior, since there isn’t enough pressure keeping the dirty water inside of the nozzle head and moving towards the flush valve. Brush-loaded nozzles are intended to provide more ‘elbow grease’ to the nozzle’s cleaning capacity. However, the bristles wear out incredibly quickly, leaving the filter owner with what is essentially the previously described undesirable floating nozzle. Even before the bristles break and deform, they can push particles into the screen.

 

The Patented Concept That Sets Us Apart

Our nozzle is one of the most highly engineered aspects to our filter. Let us explain how this simple yet unique design provides the most effective and durable nozzle available.

Efficient Design

Each nozzle contains just 4 individual pieces. The low number of moving parts reduces the opportunities for something to break. In addition, you will not find a spring anywhere inside our nozzles! While other nozzles use springs to force the nozzle head close to or onto the screen when there is low operating pressure, our patented nozzle design equalizes the pressure inside and outside of the nozzle head, allowing it to be on the screen without utilizing damaging force.

Optimal Screen Interface

Because the nozzle is always firmly on the screen with minimal force, it causes absolutely no damage to the screen. Firstly, the nozzle is always applied with minimal, gentle force on the screen at all pressure ratings, and always less than 350 g/cm2. This means that the nozzle does not push dirt and suspended solids into the screen. This is a not uncommon occurrence that not only reduces the filtration capability of the screen, but can also create holes and invalidate the promised micron rating.

 

Additional Benefits of NozzleX

In the world of water filtration, NozzleX is truly a revolution. This unique cleaning tool offers several significant benefits to an automated filtration system, which can make a real difference in the quality and longevity of a system. Here are just a few of the unique benefits you can get from using NozzleX:

Continual System Operation

Firstly, NozzleX runs as part of the automated filtration system. There’s no need to halt system operation and clean out your filtration screens; instead, NozzleX will clean your screens throughout the filtration process.

Minimal Surface Area

In addition to its consistent cleaning functionality, the NozzleX is exceptionally compact. The nozzle takes up a mere 1% of the screen area, which allows your filtration system to continue running even while it’s being cleaned, and without significantly hindering the flow rate. This will result in greater filtration capacity and greater overall efficiency for your system.

Improved Performance

Dirty or clogged filters can have a serious impact on a filtration system’s efficacy. In fact, Filtersafe testing has shown that some systems lose performance in as little as six hours due to a buildup of a ‘cake’ like layer of dirt. In that time, a system’s flow rate can drop 37%, but NozzleX maintains a consistent flow rate throughout its operations. With NozzleX, your system always fully recovers so you’ll be able to get the optimum performance from your filtration system all day long.

Zero Screen Wear

Finally, one of the greatest benefits NozzleX provides is the way it minimizes screen wear. Other nozzle-based cleaning systems use significant force to remove debris from their filters, which can lead to punctures and other damage that cuts the screen’s lifespan short. NozzleX, in contrast, equalizes system pressure to use far less force — around 1.6 Bar (23psi) of head pressure. This means your filter screens suffer next to zero wear, allowing them to operate much longer than other screens.

Filtersafe nozzle cleaning screen

Let NozzleX Clean for You 

NozzleX ensures that a filtration system stays clean throughout operations, thereby making sure that the system remains effective and efficient. As part of Filtersafe’s Everclear system, NozzleX will provide users with a completely clean filter screen — and that will help guarantee superior performance from your filtration system.

To learn more about the NozzleX cleaning technology, contact Filtersafe today. Our team will be happy to answer questions and help you find the system that best suits your industry and your organization’s unique filtration needs.

Advancing filtration standards in the ballast water industry

E Series Filter BS-804E

Filtersafe boosts filtration standards in the ballast water treatment industry by removing 316L grade stainless steel from its filter supply chain

 

Commitment is part of Filtersafe’s $10m market-feedback program and will see the company manufacture its filter screens with the more durable 904L grade steel

 

ISRAEL; Monday 15th February 2021:  Filtersafe, a world leader in automatic seawater filtration, has today announced the removal of 316L grade stainless steel from its supply chain for ballast water treatment system (BWTS) filters. The commitment will see Filtersafe switch to 904L grade stainless steel at its manufacturing facilities in Israel and Hong Kong, which produce filters for around 25% of the global BWTS market. Filtersafe’s pledge comes as the company introduces a plethora of technology upgrades as part of a $10m market-feedback program designed to boost the quality, durability, and turnaround time of BWTS filters – all without impacting filter affordability.

 

Founded with the aim of tackling the world’s most complex water filtration challenges, Filtersafe supplies filters to many of the shipping industry’s leading BWTS manufacturers including De Nora, Ecochlor, Group, Evoqua, ERMA FIRST, SunRui, TeamTec, Techcross, and Wärtsilä. The initiatives announced today mark a step-change for Filtersafe, as the company aims to enhance the agility of its maritime business in response to the shipping industry’s increasingly dynamic regulatory and operational landscape.

 

Until now, 316L steel has been widely used across the global maritime industry as the material of choice for BWTS filter screens. However, the alloy is prone to early pitting corrosion, which can compromise the overall effectiveness of the filter and the entire BWTS. In contrast, 904L steel is up to 82% more durable, meaning it can more effectively support the longevity of filter systems, as well as lowering maintenance costs. To guarantee the quality of steel used in its filters, Filtersafe has invested in two x-ray fluorescence (HHXRF) analyzers that will enable the company to carry out positive material identification (PMI) testing on every metal alloy that enters its manufacturing facilities.

In addition to the x-ray analyzers, other upgrades that form part of the $10m market-feedback program include an FS laser cutting machine designed to improve repeatability in the manufacturing process, thereby minimizing the margin of error and further reducing the possibility of filter screen corrosion. A newly digitalized warehouse system also brings additional accuracy to the manufacturing progress, adding an additional layer of quality assurance as well as optimizing the production line so that filters can be delivered in four to six weeks – the fastest lead time in the global maritime industry.

Commenting on Filtersafe’s latest initiatives, Mark Riggio, Head of Marine at Filtersafe, said: “With ballast water regulations maturing and the global maritime industry shifting its focus to operational compliance, the critical role of filters within overall the BWTS has really come to the fore – with ship owners increasingly understanding that a strong and robust filter is critical to overall system reliability.

 

“As the core material used to build filters, stainless steel should be viewed as a key factor in determining a filter’s long-term performance; it is the first critical building block from which ship owners can realize greater value from their BWTS. By being the first manufacturer to transition away from 316L grade steel, the typical steel used in maritime applications, to 904L we hope to elevate standards across the entire industry and deliver a more efficient balance between filter durability and affordability. At the same time, we’re making a huge effort to introduce new technologies and systems that instill quality across the entire filter supply chain, from start to finish, creating better value for BWMS manufacturers, as well as ship owners and operators.”

 

Commenting on Filtersafe’s decision to use 904L grade stainless steel to produce its filter screens, Marcie Merksamer, Vice President at EnviroManagement, Inc, said: “Filtersafe’s switch from 316L grade stainless steel to 904L is a step-change for the maritime industry. The move will not only increase the longevity of Filtersafe’s filters but also minimize maintenance and increase the run-time of ballast water treatment systems (BWTS). This, in turn, improves OPEX for both BWTS manufacturers as well as shipowners, as there will be less potential for system failures.

 

“Filtersafe’s investment in developing and improving technology demonstrates the company’s commitment to providing quality BWTS filters. With the implementation phase of ballast water regulations underway, shipowners need confidence their systems are meeting the requirements. New innovations, including the introduction of 904L steel, will play a key role in supporting compliance. With more data available to measure and drive progress, ongoing ballast water treatment research and development is more essential than ever.”

 

Following the introduction of the 904L steel and supporting technology at Filtersafe’s manufacturing facilities, the company is working on an industry outreach program that will see it work with BWTS manufacturers to assess the performance of filters currently in operation. Filtersafe intends to extract lessons learned and share them with others in a further bid to increase standards across the industry. The industry outreach program is underway now and is set to accelerate once the COVID-19 pandemic subsides and international travel mobility improves.

 

 

Preparing Your Ballast Water Treatment System Installation To Avoid Non-Compliance

ballast water compliant

The following article is a summary of Mark Riggio’s participation in a discussion on the topic from BWMTech 2020. You can see the summary of his discussion on best practices for ballast treatment system operators and ship owners here.

The filter is the keystone of the entire Ballast Water Treatment System (BWTS) and therefore the linchpin for the system’s success. However, the installation of a BWTS is almost always an afterthought when it comes to a ship’s design or retrofit. The smallest thing can create a barrier to proper installation, such as where a pipe is laid, so it is very important to look at the BWTS installation as far in advance as possible to prevent or remove barriers to its success.

The Source of the Problem: Installation

To provide the right filter for a ship there are many questions that need to be answered: how many tanks the ship has, their volume, power required to run the pumps, etc., However, the BWTS is typically an afterthought and something shipowners look to place on their vessels simply to meet regulations. 

If there are issues during commissioning or testing of the Ballast Water Treatment System, typically, it is because the filter was installed incorrectly, hindering its functionality. Less frequently it is due to a fundamental issue with the filter itself, and its ability to clean itself.

Recognizing the problem begins with installation, Filtersafe brought Mark in specifically because of his experience in the BWTS industry. His level of expertise and engineering knowledge in the filtration space is an asset in Filtersafe’s plan to get more guidance into customers’ hands to make sure that filters are installed properly.

Apathy Towards Non- Compliance

Compliance is a major issue, and it is a learning curve for ship owners. There needs to be buy-in from everyone involved throughout the process to ensure that the BWTS is installed properly and that compliance will be achieved.

At this point, there isn’t usually buy-in at every level because the BWTS isn’t perceived as a priority. Shipping vessels were never designed to have a water treatment plant onboard, and operators have many other things on their to-do list that are critical to the vessel’s functionality. This tension leads to the problem of how a well designed and built BWTS can end up being problematic, or not working, once it is onboard. Industries that utilize similar technology, such as drinking water treatment plants, have dozens of people operating machinery that on a boat one person is responsible for. Plus, they have much more space!

Mark shares an anecdote that is typical for onboard problems with BWTS:

During shipboard testing at a previous position, there were problems with very large organisms coming out of our discharge water that was being sampled to ensure compliance. They could not have passed through the BWTS filter, yet they were coming out of the discharge water in one port. He did some analytics and long story short, water from overboard was being allowed back through the sample port so they were sampling ocean water and not the treated water. At this point, he went and spoke with the crew to see if he could understand why this was happening. It turns out when the BWTS was in use it was setting off an alarm, which was annoying the ship workers. They discovered if they throttled the system and decreased the inlet pressure, the alarm would not bother them, but this allowed seawater to make its way up from the overboard to the sample port.

Crews know how to make systems work. Sometimes, though, what they do has unintended consequences. With this information, Mark looked to solve the nuisance alarm issue, which was easily accomplished. The core problem with the system, though was much more difficult to address because the vessel had no check valve on the outlet from the BWMS.. Despite the fact that the check valve was supposed to be there all along and was indicated on the drawings, the installer and even the commissioning engineer had failed to notice it was not actually installed. Little things that are on a drawing that does not get followed up on during installation can cause problems down the line.

Education About Environmental Impacts and Benefits

The general apathy towards proper installation occurs largely because no one is educating ship operators and installers about the environmental impacts the system has. If the staff responsible for the system’s success do not understand the benefits, they’ll lack the motivation to ensure that the is installed properly, and you’re likely to run into one of the problems previously mentioned.

On top of this, often BWTS are purchased based on price and nothing else. It can be a hard sell to a client to explain why your system is even 5% more than a competitor – but it works so much better. Purchasers are not thinking about the implications down the line if the system doesn’t work properly, they are just focused on the here and now, which is the price. Again, education can do a lot to remove that apathy. We need to explain that they are buying something not just to meet requirements, but to protect the estuaries, seas, and oceans so they can go fishing with their kids and grandkids.

As we are getting closer and closer to the mandatory installation date, there is less resistance from those on the ship about taking responsibility for making sure the system is working on board, but we cannot let that prevent us from continuing to focus on education.

Best Practices for Ballast Water Treatment System Manufacturers and Ship Owners

Best Practices for BWMS

The following article is a summary of Mark Riggio’s participation in a discussion on the topic from BWMTech 2020. You can see the summary of his discussion on ensuring the proper installation of your BWTS here.

The Ballast Water Treatment System (BWTS) is incredibly important, but at the end of the day, it is at best tangential to the functioning of the vessel itself. It’s important for the BWTS manufacturers to have a comprehensive and readable manual and ballast water management plan.

The BWTS Operations Management System (OMS) is the bible for onboard ship maintenance. Mark likes to joke that the ballast water management plan in the OMS is good creative fiction – that is, the manufacturer needs to create the fiction of what could go wrong and then decide what you can do to address that. It is very important not to put a lot of text that no one will read but practical advice as to how to address actual problems – addressing poor water conditions, component maintenance and repairs, operating outside the design limitations, etc.. The key challenge is to communicate this information in a way that the reader will be able to understand and implement while at the same time ensuring that the installer and shipyard owner have all the information they need to install the system in the best way possible.

Feedback from Shipowners: The Good and the Bad

Manufacturers do not get sufficient feedback about their systems’ operation. As manufacturers, we hear every day about the 20% of our systems that have problems, yet we don’t hear from the other 80% where our ballast water filters are working great, or perhaps even better than anticipated. Since Mark joined Filtersafe, the company has been reaching out to customers who don’t have problems to understand why it’s going well. It could be simply that the system was installed properly and they are following the OMS, or it could be they’ve found hacks for how to operate the system in difficult situations. We are encouraging this type of feedback across the industry.

We as an industry need to be bigger than a loose collection of competitors. We have a unique opportunity during the experience-building phase to ‘fail’ – but to learn from what is going on. We just want to work together as a partner and help improve systems, make better systems so that crews can use them better and we can learn from the crew’s experience to make it easier for them and decrease the impact these systems will have on shipping. Shipowners want a black box to make the problem go away, and we will continue to reach out to ship owners to get that feedback so we can arrive at a combined solution.

Placing the Blame for Problems

There is tension between the ship owners and the manufacturers as to who is responsible if there is a problem. On the one hand, the shipowner needs to make sure the system is installed properly, on the other hand, the manufacturer is the one who knows how it is supposed to be installed. If there is a problem, who is to blame?

Installing the BWTS is just one aspect of hundreds of other jobs happening on a ship during a shipyard period and the installation does not usually get the attention and treatment it deserves. The manufacturer cannot always be there for the entirety of the installation, and while they aren’t there, decisions can be made that have a fatal consequence to the system’s functionality. At the time in the shipyard, the decisions made don’t seem like they will cause a problem later on – obviously, otherwise they wouldn’t decide as such. Ultimately, a seemingly small decision such as changing a pipe placement can turn out to be a fatal flaw in the operation of the BWTS. It’s really important that the shipyard employees have the right education so they care about the proper functioning of the BWTS and not just finding ways to cut corners and save money on installation.

Mentality and Compliance

Part of the issue is that operators have not yet had to deal with widespread compliance testing. This has meant that
industry best practice became to do the best you can, and that’s good enough.

There needs to be a new culture in place of not relying on ‘good enough’. It’s not as if you can just open your BWTS and look at the screen and see if it’s still functioning at its peak with just a visual inspection, you need to test. The problem is ship owners are hesitant to check their system to see if they have a compliance issue. They don’t want to know if their ships aren’t filtering properly because then it creates a record of non-compliance.

At the same time, the US Coast Guard would rather a ship owner test and see that they aren’t complying and continue operating on a contingency measure while trying to solve the problem. If the shipowner is documenting that he is trying to solve the problem he’ll be in better shape than if a compliance officer happens to board his ship and discover he’s non-compliant. As an industry, we have to encourage ship owners to switch to indicative testing to preemptively find a problem, rather than waiting for them to be tested and discover it. The shipowner thinks he may be saving time on testing, but at the end of the day, it’s the environment that is suffering.

Looking Towards The Future: Bottlenecks and Orders

The session ended with a discussion about ramping up production post-COVID and the anticipated bottlenecks in production and manpower for installations.
The culpability in delays gets blamed on manufacturers, but part of that problem is with forecasting and shipowners not being transparent about their own installation plans and timelines. BWTS manufacturers have had inventory building up because shipowners weren’t buying at the rate anticipated. This caused a ripple effect across industries and supply chains – since manufacturers weren’t buying parts the way they previously had, inventory was also building up at suppliers, and a number of them went out of business because they couldn’t weather the economic slowdown. Filtersafe is working to bring production of some parts in-house so that they have more control over this aspect, but it still doesn’t solve the problem. Looking at Clarkson’s data vs IMO for installations in 2020, only about 60% of shipowners installed BWTS that said they would. Where are those vessels that didn’t install and when are they going to come in and put in their orders?

At the same time, the supply chain issue isn’t just a result of COVID-19. There have been issues supply chain issues since the beginning, causing EPCs and shipyard owners to be wary of working with companies they didn’t think would be able to deliver after-sales service and support.

Filtersafe has worked to disperse the risk by creating regional supply chains. They have a manufacturing center in Israel and Hong Kong so they draw from both of those areas. Also, as they’ve seen small companies go out of business, they started to bring some aspects of small part manufacturing in house. At the end of the day, these steps will only go so far if shipowners aren’t more transparent about their true plans for installation in the coming years.