Filtersafe’s Smartweave Screen: Water Filtration at a Whole New Level

filtersafe default image with logo

Most eCommerce clicks not only put new clothes or appliances in your virtual shopping cart, they also are putting your packages on cargo ships for delivery. The continued dependence on online shopping has meant more work for  international shipping vessels, which are constantly moving from one corner of the globe to another – and they’re discharging ballast water in every port they visit.

This can be dangerous for our oceans, as zooplankton, phytoplankton, and other microorganisms that hitch a ride in ballast tanks can damage the native ecosystems if they are deposited into a new body of water. Therefore, it is essential that ships filter their ballast water before releasing it back into the sea.

As a company founded by engineers, Filtersafe has been dedicated to finding innovative solutions to filtering sea water. The current seawater screens often suffer two main problems: blockage, which can result in pressure depressions and a decreased flow rate, and an inability to filter out smaller microorganisms.

To address these issues, the Filtersafe engineers created the Smartweave screen. This unique technology is a weave-wire screen specifically designed to tackle the challenge of seawater filtration. By using a combination of weave wire filtration screens, protective screens, and a reinforcement layer — as well as the automated cleaning power of our Everclear system — this innovative, highly effective screen filters out sediment and microorganisms, protecting native marine life in every port. Its combined efficacy and durability make the Smartweave screen a filtering element ships can rely on for years.

 

How It’s Made

Filtersafe understands the unique challenges facing ballast water filtration (one of the most challenging seawater applications). Seawater contains microscopic particles that can cause harm when transferred to other ecosystems and encourage the creation of corrosion within the ships’ interior. Filtering out elements this small requires a complex and multi-layered system, so the Smartweave designers created exactly that.

The Smartweave screen is made up of three stainless steel weave-wire screens and a fourth reinforcement layer to enhance the screen’s integrity. This includes one filtration control layer, two protective layers on either side, and one reinforcement layer. We then take this combination of screens and sinter them together, creating one mega-screen that is durable enough to filter without additional support.

These screens are available in a variety of sizes, from 500 microns down to 10. This allows ship owners to choose a Smartweave screen that best suits their vessels’ unique needs. The Smartweave seawater screen is also made from 904L stainless steel: an stainless steel that offers high corrosion resistance, higher quality, and a longer-lasting screen than the standard 316L stainless steel and other options in the market today.

The innovation and careful design work behind Smartweave have made it one of the top weave-wire screens for seawater filtration today. This screen offers enhanced strength and top performance, so shippers can trust that their ballast water is safe to discharge and is compliant with the IMO G8 requirements.

 

How Does It Work?

All the innovation in the world doesn’t matter if a product doesn’t work. The engineers at Filtersafe know how important seawater filtration is, and so they’ve spent years testing and perfecting the Smartweave screen. As a result, Smartweave is one of the most effective filtration systems available today, keeping zooplankton, phytoplankton, and sediment out of ballast water across the world.

The term “zooplankton” refers to small microorganism and the immature stages of larger species. It is vital to filter these from ballast water, as they can be detrimental to the native ecosystem at a port of call. According to tests from Filtersafe and other research groups, the Smartweave screen removes 99.95% of zooplankton from ballast water – more than any other filter available today.

Shippers also need to filter phytoplankton from their ballast water before releasing it into the sea. Phytoplankton, or microscopic marine algae, are an important food source in the ocean’s ecosystems – but only if they’re in the right location. While phytoplankton can be very small (as small as 10 microns), Smartweave is an effective filter for them, too. that the Smartweave screen removes 100% of phytoplankton larger than the micron of your selected screen.

Finally, a filter must be able remove sediment and other suspended solids from any ballast water. Once again, Smartweave delivers here:  A series of tests we conducted on our filter show that even in extreme conditions when the TSS levels reached 2500 ppm, we were able to decrease the decrease suspended solids from 2500 ppm to 100 ppm – a removal rate of 98%.

 

Constantly Improving

Today, Filtersafe treats 25% of the world’s ballast water – and all because of unique, innovative, and effective products like the Smartweave screen. For some teams, the Smartweave screen’s impressive filtration rates would be enough to call the filter a success. But Filtersafe is dedicated to making the ballast water filter even better.

The team is constantly innovating and perfecting our ballast water treatment systems. We’ve outfitted our Smartweave screens with our Everclear cleaning sequence, which automatically returns your filter to its original operating parameters. This ensures peak performance and an optimum flow rate – and provides the user with peace of mind.

Each Smartweave screen is used in conjunction with Filtersafe’s patented nozzles – the Nozzlex system. This uses suction technology to clean the screen thoroughly and completely with each use(without damaging it). These features help maintain the Smartweave’s exceptional performance, so captains can focus on their cargo and getting to their next location and not just about meeting USCG or IMO water treatment standards.

*Efficacy is dependent on the size and distribution of the TSS.

Sizing Up BWTS Filter Options To Reduce Operational Compliance Risk

filtersafe default image with logo

In a recent panel discussion for Riviera’s Ballast Water Webinar Week, Dr. Guillaume Drillet, Regional Manager at SGS, shared his views on the main reason for ballast water treatment system (BWTS) failures during compliance testing. Speaking on the webinar titled “BWMS commissioning testing: making it work in practice”, he said that organisms over 50 microns in size are responsible for clogging BWTS, subsequently leading to test failure.

His comments underline the critical importance of BWTS filters – the component responsible for preventing organisms from entering the tanks. Without a strong and robust filter, the effectiveness of the entire BWTS could be compromised, leaving manufacturers open to criticism from ship owners and operators, who must repeat unsatisfactory tests at a later date.

 

Compliance challenges

Selecting the right filter brings significant rewards to the shipping industry, from driving compliance, to preserving marine biodiversity and increasing operational efficiency.

Each BWTS and vessel is unique and faces its own set of challenges and specific stresses. These are impacted by the BWTS used and the conditions it must operate in. For example, there are challenging testing conditions in shipyards with poor water quality, shallow harbors with a high silt load, and difficult initial loading conditions. If a filter is unable to withstand these conditions and clogs, water flow through the BWTS will be limited or even prohibited.

 

Regulation requirements

Under IMO G8 requirements, filters must prove their ability to perform effectively in water with total suspended solids (TSS) up to 50 mg/liter. However, the threshold to pass this test is not reflective of water quality standards in some key maritime locations. For example, TSS in the Ports of Shanghai and Hamburg are twenty times higher than IMO G8 requirements for BWTS type-approval testing. This means high-quality filters that exceed IMO performance standards are critical.

Fortunately, filter performance in more challenging marine environments can be tested through the Control Union Shanghai filter test (Procedure CUW-HBR-P-2), which uses proxy mud up to and beyond 1,000 mg/L to test filter performance.


Size is part of the solution

In order to prevent organisms over a certain size from impacting BWTS and compliance testing, filters need to be engineered with a design that has effective mesh sizes.

Filtersafe use mesh sizes from 10 microns upwards, at flow rates from 50-5000m³/hr in a single unit. Using these fine mesh sizes ensures the system prevents organisms from entering or impacting the system by settling into the ballast tanks or clogging the system.

A filter capable of withstanding the highest TSS conditions found in the world’s oceans will provide confidence to shipowners that the BWTS will pass compliance tests in any port around the world. In its Shanghai Test, which simulates an excessively high particle load, Filtersafe filters did not clog, even when the test reached 2,500 TSS.

With compliance testing coming ever more to the fore, BWTS manufacturers, shipowners, and operators need to be confident that systems are capable of performing effectively throughout the lifecycle of the vessel across all marine environments, including areas where water quality challenges are acute. It is important to remember – mesh size matters.

Filtersafe’s NozzleX: An Innovation that will Save Your Filter Screen

filtersafe default image with logo

At Filtersafe, we understand that water filtration is essential to helping many industries run smoothly. However, we also understand that today’s filtration technologies can always be improved — which is why we strive to be a leader in the world of water filtration. Our engineers have decades of experience in the industry, and they’re dedicated to creating the top technologies for automatic filtration.

One such technology is the NozzleX suction scanner – an innovative tool that enables the cleaning of organic and inorganic material from your filter’s screen, without wearing down the nozzle or wearing out the screen. With a typical automatic screen filter, the nozzles sit on a bar called a raiser. The raiser moves the nozzle heads back and forth along the length of the screen, while also rotating the nozzles in a corkscrew motion. The nozzles scan the surface, and by using negative pressure, dislodge debris one square inch at a time. While this does help the screen filter water effectively in the short term, the force from the nozzle can damage the screen and shorten its lifespan.

NozzleX, by contrast, uses low head pressure (as low as 23psi) to clear off all the buildup on the screen without damaging it. First, the raisers move the nozzles in such a way that 100% of the screen is scanned and cleaned. Next, in contrast to other filters, NozzleX nozzles safely come into contact with the screen, utilizing gentle pressure to pull materials off of the screen without impacting the screen’s integrity. This results in improved performance and a longer lifespan for your ballast water filter or other filtration technologies.

 

How it Works

The NozzleX uses passive suction to remove organic matter like debris and sediment from the filter screen. Through an innovative combination of consistent force and passive pressure, whereby the nozzle both actively removes material from the filter while allowing the naturally occurring changes in pressure to carry it away, this nozzle makes cleaning your filtration system an easy and automatic process.

This patented system moves around the filter screen automatically, using as little as 1/32nd the force of typical cleaning nozzles to offer a thorough cleaning with minimal wear. Then, the nozzle disposes of reject water through the system’s flushing chamber, guaranteeing that buildup won’t remain on your screen.

NozzleX is part of Filtersafe’s Everclear cleaning system, which includes the Smartweave screen filter. Working together, these two technologies provide exceptional filtration power while minimizing space. This ensures that operators can use their filtration system as long as possible.

 

Benefits of NozzleX

In the world of water filtration, NozzleX is truly a revolution. This unique cleaning tool offers several significant benefits to an automated filtration system, which can make a real difference in the quality and longevity of a system. Here are just a few of the unique benefits you can get from using NozzleX:
  

    • Continual System Operation: Firstly, NozzleX runs as part of the automated filtration system. There’s no need to halt system operation and clean out your filtration screens; instead, NozzleX will clean your screens throughout the filtration process.
    • Minimal Surface Area: In addition to its consistent cleaning functionality, the NozzleX is exceptionally compact. The nozzle takes up a mere 1% of the screen area, which allows your filtration system to continue running even while it’s being cleaned, and without significantly hindering the flow rate. This will result in greater filtration capacity and greater overall efficiency for your system.
    • Improved Performance: Dirty or clogged filters can have a serious impact on a filtration system’s efficacy. In fact, Filtersafe testing has shown that some systems lose performance in as little as six hours. In that time, a system’s flow rate can drop from about 3,000 m3/hr to less than 1,900 — but NozzleX maintains a consistent flow rate throughout its operations. With NozzleX, you’ll be able to get the optimum performance from your filtration system all day long.
    • Zero Screen Wear: Finally, one of the greatest benefits NozzleX provides is the way it minimizes screen wear. Other nozzle-based cleaning systems use significant force to remove debris from their filters, which can lead to punctures and other damage that cuts the screen’s lifespan short. NozzleX, in contrast, equalizes system pressure to use far less force — around 1.6 Bar (23psi) of head pressure. This means your filter screens suffer next to zero wear, allowing them to operate much longer than other screens.

     

    Why It’s Important

    The importance of a properly functioning nozzle is simple – a water filtration system only works when it’s clean. Whether you are filtering ballast water before filling your tanks, protecting your oil and gas exploration equipment safe from organic oceanic materials, or prefiltering water for desalination, each filtration system should have the same thing in common  a reliable nozzle to clean your screen.

    So, why not let NozzleX do the job for you?

    NozzleX ensures that a filtration system stays clean throughout operations, thereby making sure that the system remains effective and efficient. As part of Filtersafe’s Everclear system, NozzleX will provide users with a completely clean filter screen — and that will help guarantee superior performance from your filtration system.

     

    To learn more about the NozzleX cleaning technology, contact Filtersafe today. Our team will be happy to answer questions and help you find the system that best suits your industry and your organization’s unique filtration needs.

Advancing filtration standards in the ballast water industry

E Series Filter BS-804E

Filtersafe boosts filtration standards in the ballast water treatment industry by removing 316L grade stainless steel from its filter supply chain

 

Commitment is part of Filtersafe’s $10m market-feedback program and will see the company manufacture its filter screens with the more durable 904L grade steel

 

ISRAEL; Monday 15th February 2021:  Filtersafe, a world leader in automatic seawater filtration, has today announced the removal of 316L grade stainless steel from its supply chain for ballast water treatment system (BWTS) filters. The commitment will see Filtersafe switch to 904L grade stainless steel at its manufacturing facilities in Israel and Hong Kong, which produce filters for around 25% of the global BWTS market. Filtersafe’s pledge comes as the company introduces a plethora of technology upgrades as part of a $10m market-feedback program designed to boost the quality, durability, and turnaround time of BWTS filters – all without impacting filter affordability.

 

Founded with the aim of tackling the world’s most complex water filtration challenges, Filtersafe supplies filters to many of the shipping industry’s leading BWTS manufacturers including De Nora, Ecochlor, Group, Evoqua, ERMA FIRST, SunRui, TeamTec, Techcross, and Wärtsilä. The initiatives announced today mark a step-change for Filtersafe, as the company aims to enhance the agility of its maritime business in response to the shipping industry’s increasingly dynamic regulatory and operational landscape.

 

Until now, 316L steel has been widely used across the global maritime industry as the material of choice for BWTS filter screens. However, the alloy is prone to early pitting corrosion, which can compromise the overall effectiveness of the filter and the entire BWTS. In contrast, 904L steel is up to 82% more durable, meaning it can more effectively support the longevity of filter systems, as well as lowering maintenance costs. To guarantee the quality of steel used in its filters, Filtersafe has invested in two x-ray fluorescence (HHXRF) analyzers that will enable the company to carry out positive material identification (PMI) testing on every metal alloy that enters its manufacturing facilities.

In addition to the x-ray analyzers, other upgrades that form part of the $10m market-feedback program include an FS laser cutting machine designed to improve repeatability in the manufacturing process, thereby minimizing the margin of error and further reducing the possibility of filter screen corrosion. A newly digitalized warehouse system also brings additional accuracy to the manufacturing progress, adding an additional layer of quality assurance as well as optimizing the production line so that filters can be delivered in four to six weeks – the fastest lead time in the global maritime industry.

Commenting on Filtersafe’s latest initiatives, Mark Riggio, Head of Marine at Filtersafe, said: “With ballast water regulations maturing and the global maritime industry shifting its focus to operational compliance, the critical role of filters within overall the BWTS has really come to the fore – with ship owners increasingly understanding that a strong and robust filter is critical to overall system reliability.

 

“As the core material used to build filters, stainless steel should be viewed as a key factor in determining a filter’s long-term performance; it is the first critical building block from which ship owners can realize greater value from their BWTS. By being the first manufacturer to transition away from 316L grade steel, the typical steel used in maritime applications, to 904L we hope to elevate standards across the entire industry and deliver a more efficient balance between filter durability and affordability. At the same time, we’re making a huge effort to introduce new technologies and systems that instill quality across the entire filter supply chain, from start to finish, creating better value for BWMS manufacturers, as well as ship owners and operators.”

 

Commenting on Filtersafe’s decision to use 904L grade stainless steel to produce its filter screens, Marcie Merksamer, Vice President at EnviroManagement, Inc, said: “Filtersafe’s switch from 316L grade stainless steel to 904L is a step-change for the maritime industry. The move will not only increase the longevity of Filtersafe’s filters but also minimize maintenance and increase the run-time of ballast water treatment systems (BWTS). This, in turn, improves OPEX for both BWTS manufacturers as well as shipowners, as there will be less potential for system failures.

 

“Filtersafe’s investment in developing and improving technology demonstrates the company’s commitment to providing quality BWTS filters. With the implementation phase of ballast water regulations underway, shipowners need confidence their systems are meeting the requirements. New innovations, including the introduction of 904L steel, will play a key role in supporting compliance. With more data available to measure and drive progress, ongoing ballast water treatment research and development is more essential than ever.”

 

Following the introduction of the 904L steel and supporting technology at Filtersafe’s manufacturing facilities, the company is working on an industry outreach program that will see it work with BWTS manufacturers to assess the performance of filters currently in operation. Filtersafe intends to extract lessons learned and share them with others in a further bid to increase standards across the industry. The industry outreach program is underway now and is set to accelerate once the COVID-19 pandemic subsides and international travel mobility improves.

 

 

Preparing Your Ballast Water Treatment System Installation To Avoid Non-Compliance

ballast water compliant

The following article is a summary of Mark Riggio’s participation in a discussion on the topic from BWMTech 2020. You can see the summary of his discussion on best practices for ballast treatment system operators and ship owners here.

The filter is the keystone of the entire Ballast Water Treatment System (BWTS) and therefore the linchpin for the system’s success. However, the installation of a BWTS is almost always an afterthought when it comes to a ship’s design or retrofit. The smallest thing can create a barrier to proper installation, such as where a pipe is laid, so it is very important to look at the BWTS installation as far in advance as possible to prevent or remove barriers to its success.

The Source of the Problem: Installation

To provide the right filter for a ship there are many questions that need to be answered: how many tanks the ship has, their volume, power required to run the pumps, etc., However, the BWTS is typically an afterthought and something shipowners look to place on their vessels simply to meet regulations. 

If there are issues during commissioning or testing of the Ballast Water Treatment System, typically, it is because the filter was installed incorrectly, hindering its functionality. Less frequently it is due to a fundamental issue with the filter itself, and its ability to clean itself.

Recognizing the problem begins with installation, Filtersafe brought Mark in specifically because of his experience in the BWTS industry. His level of expertise and engineering knowledge in the filtration space is an asset in Filtersafe’s plan to get more guidance into customers’ hands to make sure that filters are installed properly.

Apathy Towards Non- Compliance

Compliance is a major issue, and it is a learning curve for ship owners. There needs to be buy-in from everyone involved throughout the process to ensure that the BWTS is installed properly and that compliance will be achieved.

At this point, there isn’t usually buy-in at every level because the BWTS isn’t perceived as a priority. Shipping vessels were never designed to have a water treatment plant onboard, and operators have many other things on their to-do list that are critical to the vessel’s functionality. This tension leads to the problem of how a well designed and built BWTS can end up being problematic, or not working, once it is onboard. Industries that utilize similar technology, such as drinking water treatment plants, have dozens of people operating machinery that on a boat one person is responsible for. Plus, they have much more space!

Mark shares an anecdote that is typical for onboard problems with BWTS:

During shipboard testing at a previous position, there were problems with very large organisms coming out of our discharge water that was being sampled to ensure compliance. They could not have passed through the BWTS filter, yet they were coming out of the discharge water in one port. He did some analytics and long story short, water from overboard was being allowed back through the sample port so they were sampling ocean water and not the treated water. At this point, he went and spoke with the crew to see if he could understand why this was happening. It turns out when the BWTS was in use it was setting off an alarm, which was annoying the ship workers. They discovered if they throttled the system and decreased the inlet pressure, the alarm would not bother them, but this allowed seawater to make its way up from the overboard to the sample port.

Crews know how to make systems work. Sometimes, though, what they do has unintended consequences. With this information, Mark looked to solve the nuisance alarm issue, which was easily accomplished. The core problem with the system, though was much more difficult to address because the vessel had no check valve on the outlet from the BWMS.. Despite the fact that the check valve was supposed to be there all along and was indicated on the drawings, the installer and even the commissioning engineer had failed to notice it was not actually installed. Little things that are on a drawing that does not get followed up on during installation can cause problems down the line.

Education About Environmental Impacts and Benefits

The general apathy towards proper installation occurs largely because no one is educating ship operators and installers about the environmental impacts the system has. If the staff responsible for the system’s success do not understand the benefits, they’ll lack the motivation to ensure that the is installed properly, and you’re likely to run into one of the problems previously mentioned.

On top of this, often BWTS are purchased based on price and nothing else. It can be a hard sell to a client to explain why your system is even 5% more than a competitor – but it works so much better. Purchasers are not thinking about the implications down the line if the system doesn’t work properly, they are just focused on the here and now, which is the price. Again, education can do a lot to remove that apathy. We need to explain that they are buying something not just to meet requirements, but to protect the estuaries, seas, and oceans so they can go fishing with their kids and grandkids.

As we are getting closer and closer to the mandatory installation date, there is less resistance from those on the ship about taking responsibility for making sure the system is working on board, but we cannot let that prevent us from continuing to focus on education.

Best Practices for Ballast Water Treatment System Manufacturers and Ship Owners

Best Practices for BWMS

The following article is a summary of Mark Riggio’s participation in a discussion on the topic from BWMTech 2020. You can see the summary of his discussion on ensuring the proper installation of your BWTS here.

The Ballast Water Treatment System (BWTS) is incredibly important, but at the end of the day, it is at best tangential to the functioning of the vessel itself. It’s important for the BWTS manufacturers to have a comprehensive and readable manual and ballast water management plan.

The BWTS Operations Management System (OMS) is the bible for onboard ship maintenance. Mark likes to joke that the ballast water management plan in the OMS is good creative fiction – that is, the manufacturer needs to create the fiction of what could go wrong and then decide what you can do to address that. It is very important not to put a lot of text that no one will read but practical advice as to how to address actual problems – addressing poor water conditions, component maintenance and repairs, operating outside the design limitations, etc.. The key challenge is to communicate this information in a way that the reader will be able to understand and implement while at the same time ensuring that the installer and shipyard owner have all the information they need to install the system in the best way possible.

Feedback from Shipowners: The Good and the Bad

Manufacturers do not get sufficient feedback about their systems’ operation. As manufacturers, we hear every day about the 20% of our systems that have problems, yet we don’t hear from the other 80% which are working great, or perhaps even better than anticipated. Since Mark joined Filtersafe, the company has been reaching out to customers who don’t have problems to understand why it’s going well. It could be simply that the system was installed properly and they are following the OMS, or it could be they’ve found hacks for how to operate the system in difficult situations. We are encouraging this type of feedback across the industry.

We as an industry need to be bigger than a loose collection of competitors. We have a unique opportunity during the experience-building phase to ‘fail’ – but to learn from what is going on. We just want to work together as a partner and help improve systems, make better systems so that crews can use them better and we can learn from the crew’s experience to make it easier for them and decrease the impact these systems will have on shipping. Shipowners want a black box to make the problem go away, and we will continue to reach out to ship owners to get that feedback so we can arrive at a combined solution.

Placing the Blame for Problems

There is tension between the ship owners and the manufacturers as to who is responsible if there is a problem. On the one hand, the shipowner needs to make sure the system is installed properly, on the other hand, the manufacturer is the one who knows how it is supposed to be installed. If there is a problem, who is to blame?

Installing the BWTS is just one aspect of hundreds of other jobs happening on a ship during a shipyard period and the installation does not usually get the attention and treatment it deserves. The manufacturer cannot always be there for the entirety of the installation, and while they aren’t there, decisions can be made that have a fatal consequence to the system’s functionality. At the time in the shipyard, the decisions made don’t seem like they will cause a problem later on – obviously, otherwise they wouldn’t decide as such. Ultimately, a seemingly small decision such as changing a pipe placement can turn out to be a fatal flaw in the operation of the BWTS. It’s really important that the shipyard employees have the right education so they care about the proper functioning of the BWTS and not just finding ways to cut corners and save money on installation.

Mentality and Compliance

Part of the issue is that operators have not yet had to deal with widespread compliance testing. This has meant that
industry best practice became to do the best you can, and that’s good enough.

There needs to be a new culture in place of not relying on ‘good enough’. It’s not as if you can just open your BWTS and look at the screen and see if it’s still functioning at its peak with just a visual inspection, you need to test. The problem is ship owners are hesitant to check their system to see if they have a compliance issue. They don’t want to know if their ships aren’t filtering properly because then it creates a record of non-compliance.

At the same time, the US Coast Guard would rather a ship owner test and see that they aren’t complying and continue operating on a contingency measure while trying to solve the problem. If the shipowner is documenting that he is trying to solve the problem he’ll be in better shape than if a compliance officer happens to board his ship and discover he’s non-compliant. As an industry, we have to encourage ship owners to switch to indicative testing to preemptively find a problem, rather than waiting for them to be tested and discover it. The shipowner thinks he may be saving time on testing, but at the end of the day, it’s the environment that is suffering.

Looking Towards The Future: Bottlenecks and Orders

The session ended with a discussion about ramping up production post-COVID and the anticipated bottlenecks in production and manpower for installations.
The culpability in delays gets blamed on manufacturers, but part of that problem is with forecasting and shipowners not being transparent about their own installation plans and timelines. BWTS manufacturers have had inventory building up because shipowners weren’t buying at the rate anticipated. This caused a ripple effect across industries and supply chains – since manufacturers weren’t buying parts the way they previously had, inventory was also building up at suppliers, and a number of them went out of business because they couldn’t weather the economic slowdown. Filtersafe is working to bring production of some parts in-house so that they have more control over this aspect, but it still doesn’t solve the problem. Looking at Clarkson’s data vs IMO for installations in 2020, only about 60% of shipowners installed BWTS that said they would. Where are those vessels that didn’t install and when are they going to come in and put in their orders?

At the same time, the supply chain issue isn’t just a result of COVID-19. There have been issues supply chain issues since the beginning, causing EPCs and shipyard owners to be wary of working with companies they didn’t think would be able to deliver after-sales service and support.

Filtersafe has worked to disperse the risk by creating regional supply chains. They have a manufacturing center in Israel and Hong Kong so they draw from both of those areas. Also, as they’ve seen small companies go out of business, they started to bring some aspects of small part manufacturing in house. At the end of the day, these steps will only go so far if shipowners aren’t more transparent about their true plans for installation in the coming years.

What Is Ballast Water Treatment?

types of ballast water treatment infographic

Individuals in the shipping industry carry great responsibility each time they leave port. Firstly, they have a responsibility in carrying out their duties, transporting cargo, and delivering goods for clients across the globe. Completing this task is essential — and it requires each part of every ship to be in perfect working order. Secondly, shipping companies must consider the ecological impact of their transport vessels. Global shipping channels have connected humanity at an unprecedented scale, but it is also put the various ecosystems around the world at risk. This is due to microorganisms that travel in the ship’s ballast water and can contaminate or invade the marine ecology of a new region, causing untold damage to the area.

In response to these ecological risks, the International Marine Organization (IMO) adopted the International Convention for the Control and Management of Ships’ Ballast Water and Sediments in 2004. This Convention aimed to halt the spread of invasive aquatic species by implementing requirements on the shipping industry to treat their ballast water.

A high-quality ballast water management system is critical for the success of any shipping business. But how do these systems work, and how do they add value to your ships? This article will discuss the immense impact that ballast water treatment can have on your business.

Why Do You Need Ballast Water Treatment?

The aim of ballast water treatment is the elimination of invasive marine species. The USDA reports that ballast water is “one of the major pathways for the introduction of non-indigenous marine species.”

When ships release ballast water at a new port-of-call, they risk introducing alien species, from small fish to microorganisms, into the water around the new area. This can result in a variety of harmful effects; the European Maritime Safety Agency credit invasive marine species with microbial exposure, lower habitat quality, and other dangers that can ultimately harm fishing and even protected species in the region.

To prevent these damaging effects, the United States Coast Guard (USCG) and the International Maritime Organization (IMO and USCG) require all ships to “undertake comprehensive actions in order to prevent, reduce and, if possible, eliminate the transfer of harmful aquatic organisms and pathogens through the control and management of ships’ ballast water and sediments.” This includes meeting the requirements of either Ballast Water Management D-1, a regulation that requires any ship performing ballast water exchange to do so with an efficiency of 95% ballast water, or Ballast Water Management D-2, a regulation that sets a maximum concentration of microorganisms in discharged ballast water. The standards for regulation D-2 are:

  • < 10 viable cells per m3 for plankton smaller than 50 μm
  • < 10 viable cells per mL for plankton between 10-50 μm
  • < 10 Colony Forming Unit per 100 mL for Toxicogenic Vibrio Cholerae
  • < 250 Colony Forming Unit per 100 mL for Escherichia Coli
  • < 100 Colony Forming Unit per 100 mL for Intestinal Enterococci

A properly designed BWMS will meet these standards automatically, eliminating the shipping operator’s need to worry about these regulations.

How Ballast Water Treatment Works

It should be noted that the majority of BWTS use a combination of filtration and a secondary, disinfection stage for treatment.

Chemical Disinfection

Many BWMS utilize biocides as their disinfection stage. Biocides, which in BWMS typically use chlorine as an  oxidizing disinfectants inactivates microorganisms in the ballast water. The main drawback of biocides, which are used in about half of all systems, is that the treated water may still need to be neutralized or detoxified before its final deballasting.

U.V. Treatment

Some ballast water treatment systems use ultraviolet lamps. As the ballast water passes through chambers that contain the lamps, the ultraviolet light impacts the DNA of the organisms and renders them non-viable, or incapable of reproduction. This effectively eliminates the threat of microorganisms from thriving in the water and prevents them from becoming a burden on the ecosystem where they are released. However, UV can be affected by waters with low TSS (total suspended solids), and its success depends largely on the quality of the filtration system that precedes the treatment.

Deoxygenation

Like biocides, deoxygenation kills any living organisms in the ballast water. The ballast water treatment system injects an inert gas (such as nitrogen) into the tank or the ballast flow to asphyxiate the organisms. This system can be effective, but it is important to note that this process takes two to four days and requires the tanks to be sealed against atmospheric oxygen. Deoxygenation is not recommended for short transits.

Heat Treatment

As the name suggests, heat treatment involves heating ballast water until it kills any organisms in the water. There are two main ways to complete this method: heating the ballast water in their tanks or heating the water by running it past the ship’s engines (effectively turning it into cooling water). Heat treatment will disinfect the ballast water and make it suitable for release, but this can take a long time – and the heat can cause greater corrosion in the ballast water tanks.

Ultrasonic Treatment

Ultrasonic treatment (also called cavitation treatment) uses high energy ultrasound to eliminate organisms in the ballast water. The high pressure caused by the ultrasound ultimately breaks down organisms’ cell walls, killing them. Ultrasonic treatment is an attractive choice because it is low maintenance and non-chemical; however, research indicates that this ballast water treatment system works best in conjunction with other treatment methods like U.V. or biocides.

Almost every ballast water treatment system uses a water filter in conjunction with another method, such as the ones discussed above. The right water filter serves several practical and economic purposes in the BWTS. First, it is an effective way to remove sediment that can be taken in at turbulent ports and if not properly removed, can collect in the ballast tanks. Additionally, a filter can remove a large portion of the microorganisms that we have already discussed. This reduces the time and energy needed to neutralize the organisms that make their way through the filter and need to be treated before the water they reside in can be stored onboard or dumped.

Your Ballast Water Treatment System

The type of ballast water treatment system your ship needs will vary based on size, available space, budget, and more. However, it is almost certain that your ship (any ship, for that matter) will benefit from a ballast water treatment system that incorporates a Filtersafe filter.

Filtersafe offers specialized solutions that perfectly compliment every ballast water treatment system. Firstly, our patented filtration screen does not only keep out most zooplankton, phytoplankton, and sediment from entering the ballast water tanks. Since the screens have proven filtration capabilities down to 25 microns, the effluent water needs less secondary treatments to sterilize the water, saving BWTS owners money through lower power consumption and use of disinfection chemicals.

Next, all E-Series ballast water filters are capable of being installed horizontally or vertically and rotated to any position, even after the filter has been delivered to the vessel. This flexible modular design allows Filtersafe to build and ship their filters faster than any other company in the market.

Lastly, the various different models of filters have been optimized to handle low or high water flows, so whether you have a large oil tanker with cavernous ballast tanks, or a simple cargo ship on short, coastal voyages, you can turn to Filtersafe to provide filters for all of the vessels in your shipyard.

Filtersafe has been an industry innovator for ballast water treatment systems for over 15 years – and today, our products filter about 25% of the world’s ballast water. To learn more about our ballast water treatment systems (or to find a filtration system that suits your ships), contact our team of specialists today.